Урок 5. Средняя линия трапеции
В трапеции АВСD отрезки АD и ВC являются основаниями трапеции, а отрезки АВ и СD – боковыми сторонами.Отрезок, соединяющий середины боковых сторон трапеции, называется её средней линией. Докажем, что средняя…
В трапеции АВСD отрезки АD и ВC являются основаниями трапеции, а отрезки АВ и СD – боковыми сторонами.Отрезок, соединяющий середины боковых сторон трапеции, называется её средней линией. Докажем, что средняя…
КонспектПредставим себе, что велосипедист движется прямолинейно с постоянной скоростью, мотоциклист движется в том же направлении со скоростью вдвое большей. Навстречу им, то есть в противоположном направлении, движется автомобиль, скорость которого…
КонспектРазностью векторов a ⃗ и b ⃗ называется такой вектор, сумма которого с вектором b ⃗ равна вектору a ⃗: a ⃗ — b ⃗ = c ⃗, если c…
КонспектРассмотрим ситуацию. Стартовав из пункта A, туристы прошли 4 километра на запад, а затем 3 километра на север. В результате этих двух перемещений туристы переместились из пункта А в пункт…
Некоторые физические величины, например, сила или скорость характеризуются не только числовым значением, но и направлением. Такие величины называются векторными: F ⃗ – сила, v ⃗ – скорость.Дадим геометрическое определение вектора.Вектором…
Напомним основные понятия и выводы теме «Окружность»Прямая, имеющая с окружностью только одну общую точку называется касательной к окружности.Общая точка прямой и окружности называется точкой касания. Отрезки касательных к окружности, проведенные…
Введем новое понятие: описанная окружность.Определение: если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в эту окружность. На рисунке четырёхугольник MNKP вписан…
КонспектРассмотрим окружность с центром в точке O и некоторым радиусом Проведем к этой окружности несколько касательных, которые попарно пересекаются. Соединим точки пересечения касательных отрезками. Если все стороны многоугольника касаются некоторой…
КонспектВспомним определение: Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника. AH – высота треугольника ABC.Из курса 7 класса, мы знаем, что в любом треугольнике можно…
КонспектРассмотрим отрезок АВ, найдем его середину, обозначим её точкой М. Через точку М проведём перпендикуляр к отрезку AВ. a — серединный перпендикуляр к ABСерединным перпендикуляром к отрезку АВ называется прямая,…
КонспектБиссектрисой угла называется луч, исходящий из вершины и делящий угол пополам. AD — биссектриса угла BCAТеорема о биссектрисе углаТеорема: Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.Дано: ∠BAC, AD…
Отрезок, соединяющий две точки окружности, называется ее хордой.Свойства хорд окружностиТеорема: Радиус, перпендикулярный к хорде, делит эту хорду пополам. Дано: окружность с центром O, AB – хорда, OC ⊥ ABДоказать: AM…
Угол, вершина которого находится на окружности, а стороны пересекают окружность, называется вписанным углом. ∠ABC – вписанный уголВписанный угол АВС опирается на дугу АС.Теорема о вписанном углеТеорема: Вписанный угол измеряется половиной…
Рассмотрим окружность с центром в точке O. Отметим на окружности две точки A и В. Они разделяют окружность на две дуги. Для того, чтобы различать эти дуги, на каждой из…
КонспектРассмотрим окружность с центром в точке О и прямую a, её не пересекающую.Расстояние от центра окружности до прямой равно длине перпендикуляра ОВ. Это расстояние больше радиуса окружности.Будем перемещать прямую, параллельно…
Вспомним определения синуса, косинуса и тангенса острого угла прямоугольного треугольника.∆ABC, ∠C = 90°Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.cosA = AC/ABСинусом острого угла прямоугольного треугольника называется…
Рассмотрим равносторонний треугольник AВС, у которого сторона равна a AB = BC = AC = aОпустим высоту BD на основание треугольника, она же будет являться медианой и биссектрисой. ∆ABD —…
Рассмотрим прямоугольный треугольник АВС Размеры катетов и гипотенузы следующиеAC = 12BC = 9AB = 15Разделим длину катета АС на длину гипотенузы АВAC/AB = 12/15 = 4/5 = 0,8Возьмем точку С1…
Построим треугольник по двум углам и биссектрисе при вершине третьего угла.Зададим углы треугольника α и β и длину биссектрисы a.а = 2; α = 50°; β = 40°.Начертим отрезок А1В1.Построим…
КонспектВ романе Артура Конан Дойля «Белый отряд» лучники и копейщики стараются помочь своим друзьям, осажденным в горящей башне. Утром, когда солнце уже взошло, и башня отбрасывала тень, лучник собрал веревки…
КонспектТеорема: В прямоугольном треугольнике высота, проведенная из вершины прямоуго угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику. Дано: ∆ABC, ∠С=90°, CD⊥ABДоказать: ∆ACD ~ ∆ABC,…
КонспектРассмотрим треугольник АВС. Отметим точку M – середину стороны АВ, точку N – середину стороны ВС. Отрезок, соединяющий середины двух сторон треугольника называется средней линией треугольника.Для любого треугольника и для…
Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.Процесс нахождения подобных треугольников можно упростить, зная признаки подобия треугольников.Первый признак подобия треугольников:Если два…
Отношением отрезков AB и CD называется отношение их длин. Отрезки AB и CD пропорциональны отрезкам A1B1 и C1D1, если их отношения равны. AB/(A1B1) = CD/(C1D1)Выясним, пропорциональны ли отрезки на рисунке.…
КонспектРешим задачу.Дано:треугольник со сторонами a, b, c.Найти: площадь треугольника, если величина сторон изменяется от 1 до 10.Решение:По формуле Геронаp = (a + b + c)S = √p(p — a)(p —…
Выведем формулу, которая связывает площадь треугольника и длины его сторон. Рассмотрим треугольник ABC в котором известны его стороны. Обозначим их a, b, c. Для доказательства воспользуемся формулой для вычисления площади…
Рассмотрим прямоугольный треугольник.Соотношение между катетами и гипотенузой было известно еще в Древнем Египте и Вавилоне. Сегодня нам это соотношение известно как теорема Пифагора. В современной формулировке теорема Пифагора звучит так:…
Выведем формулу для вычисления площади трапеции.Пусть дана трапеция ABCD с основаниями BC и AD и высотой BH. Разобьем трапецию диагональю BD на два треугольника, найдём площадь каждого из них. По…
Выведем формулу для вычисления площади треугольника и следствия из неё. Одну из сторон треугольника будем называть основанием. Например, сторону AC. Тогда высотой треугольника будем считать ту, которая проведена к основанию.…
Выведем формулу для вычисления площади параллелограмма. Докажем, что площадь параллелограмма равна произведению его основания на высоту. Одну из сторон параллелограмма будем условно называть основанием. Перпендикуляр, проведенный из любой точки противоположной…